Motion Planning for Humanoid Robots Under Obstacle and Dynamic Balance Constraints
نویسندگان
چکیده
We present an approach to path planning for humanoid robots that computes dynamically-stable, collision-free trajectories from full-body posture goals. Given a geometric model of the environment and a statically-stable desired posture, we search the configuration space of the robot for a collision-free path that simultaneously satisfies dynamic balance constraints. We adapt existing randomized path planning techniques by imposing balance constraints on incremental search motions in order to maintain the overall dynamic stability of the final path. A dynamics filtering function that constrains the ZMP (zero moment point) trajectory is used as a post-processing step to transform statically-stable, collision-free paths into dynamically-stable, collision-free trajectories for the entire body. Although we have focused our experiments on biped robots with a humanoid shape, the method generally applies to any robot subject to balance constraints (legged or not). The algorithm is presented along with computed examples using the humanoid robot “H6”.
منابع مشابه
Direct Optimal Motion Planning for Omni-directional Mobile Robots under Limitation on Velocity and Acceleration
This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a quadratic cost function while limitation on velocity and acceleration of robot is considered and collision with any obstacle in the...
متن کاملDynamically-Stable Motion Planning for Humanoid Robots
We present an algorithm for computing stable collision-free motions for humanoid robots given fullbody posture goals. The motion planner is part of a simulation environment under development for providing high-level software control for humanoid robots. Given a robot’s internal model of the environment and a statically-stable desired posture, we use a randomized path planner to search the confi...
متن کاملTime Efficient Hybrid Motion Planning Algorithm for HOAP-2 Humanoid Robot
The development of practical motion planning algorithms and obstacle avoidance techniques is considered as one of the most important fields of study in the task of building autonomous or semiautonomous robot systems. The motion planners designed for humanoid robots combine both path planning generation and the ability of executing the resulting path with respect to their characteristics. These ...
متن کاملA Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres
This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...
متن کاملElastic Strips: A Framework for Motion Generation in Human Environments
Robotic applications are expanding into dynamic, unstructured, and populated environments. Mechanisms specifically designed to address the challenges arising in these environments, such as humanoid robots, exhibit high kinematic complexity. This creates the need for new algorithmic approaches to motion generation, capable of performing task execution and real-time obstacle avoidance in highdime...
متن کامل